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- What is Machine Learning (ML) and why study it? 

- Purposes of  Machine Learning 

- Machine Learning in practice  

- Hands on case: predicting soybean prices using several ML 

approaches.  

  

 
 
 



What is Machine Learning? 
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Machine Learning (or statistical learning; ML): set of tools or 
algorithms for understanding data. 
 
Novelty of machine learning is that it often follows a purely 
data-driven approach. Classical econometrics often more 
procedural: 

- Start from theory in selecting variables 
- Choose a specific functional form a priori 
- Choose a specific statistical technique (e.g. OLS) a priori 

 
Contributions of novel ML literature are:  
1. Many new tools (e.g. trees & forests, neural networks) 
2. New ideas on how to analyse data. 
3. Methods for analysing big data in automated way, even if there are 

more variables than observations. 



Why study Machine Learning? 
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1. Offers new ways of analysing data. 

2. In other research fields already used a lot, so 
interdisciplinary cooperation and communication may 
require knowledge. 

3. More and more data becoming available, e.g. internet data, 
big data, climate data, text data. May require new tools.  

  

 



Purposes of Machine Learning 
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Main purposes of ML are prediction and classification. 
 
Inference is about understanding the relation between input 
and output variables. E.g. (James et al., 2023: 19): 
- Which predictors are associated with the response? 
- What is the relationship between the response and each predictor? 
- Is the relationship linear or more complicated?  

 
In regression analysis these questions are usually answered 
using hypothesis testing (e.g. t-test, F-test, LR-test). In ML this 
is (almost) absent, although other approaches are getting 
popular (e.g. Shapley values). 
 
Often trade-off between prediction accuracy and model 
interpretability (and possibility of inference). 



Purposes of Machine Learning 
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Source: James et al., 2023: 24.



So, why can’t we do inference in ML? 
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▪ Standard errors often not given, or even impossible 
▪ Certain ML methods select variables from large pool: 

• May randomly differ in different runs, many coefficients set to zero 
• Strong correlation would lead to large standard errors in regression 

due to multicollinearity, ML (e.g. LASSO, trees) just drops them. 
• Selecting some but not others → missing variable bias 

▪ Regularization (setting key parameters, e.g. # of trees and 
depth) adds subjectivity. 

 
In practice, superior prediction of ML is appreciated, at the cost 
of not being able to interpret and test the coefficients. 
  

Not this LASSO… 



So, why can’t we do inference in ML? 
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Efron (2020): Success of ML due to fact that prediction is easier 
than estimation or attribution (inference). 
▪ Some ML methods combine individually weak learners (ensembles) 
▪ Attribution demands much more of individual variables. 

 
Efron (2020): so-called ‘importance scores’ for predictors, e.g., 
in random forest, cannot be used to claim that certain variables 
are key due to strong correlations among the many variables 
→ strong correlation does not matter for prediction 
→ strong correlation makes attribution/inference very difficult 
 
 



Machine Learning in practice 
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ML does not imply automatic implementation of the best model 
and training method. Still many choices: 
 
1a. Choice of ML method 
1b. Setting key parameters for method (e.g. # of trees; # of 

variables; shrinkage parameter) 
 
2a. Encoding and transformation of variables (per unit; ln or 

linear; first-differences; normalised) 
2b. Theory may be useful in many modeling decisions 
 
3. Choices on how to evaluate quality of the model, e.g., MSE, 

RMSE, MAE, MAPE 
  



Machine Learning in practice 
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In econometrics models often estimated on all data available, 
and then used for inference or (out-of-sample) prediction. 
 
Due to the prediction focus, ML typically has 3 phases: training, 
validation, and testing. 
 
Available data is partly used to train (estimate) the model, 
validated on a (randomly) held out subsample of the training 
data, and finally used for testing (prediction in test sample). 
 
A danger of more flexible ML approaches is overfitting: the 
model follows the data, including the errors, too closely → poor 
predictions in test stage. In other words, the improved training 
fit goes at the cost of testing (or prediction) fit. 
  



Machine Learning in practice 
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Machine Learning in practice 
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Source: Mullainathan and Spiess (2017)



Machine Learning in practice 
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If no extensive test set available, cross-validation can be used: 
hold out a subset of training observations and use as validation 
set which fit proxies for test fit. Validation set ≠ test set! 
 
Most popular is K-fold cross-validation: Randomly divide 
training sample in k folds or groups. Train the model k times, 
every time leaving out one of the folds and calculating measure 
of fit for the hold-out fold. Final measure is average over the k 

values, e.g., 
k

CV k
i

MSE MSE
k 1

1

=

=    → cross-validation error 

 
Usually k set to 5 or 10. 
  



Machine Learning in practice 
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Cross-validation useful for: 
▪ Evaluating model performance (model assessment) 
▪ Comparing performance of various models (model selection) 
▪ Avoiding overfitting 
▪ Getting better estimate of prediction error. 

 
Time-series and panel data have a clear time ordering of data. 
So, randomly holding out obs. in cross-validation not ideal: 
▪ Lagged values included in models cannot be taken. 
▪ Obs. strongly correlate over time, so randomly held out obs. easy to 

predict → flawed validation fit measures. 
 
Idea of k-fold cross-validation can be adapted for time-series 
and panel data, maintaining the time order of observations, by 
using k overlapping blocks of training and validation data. 
 



Validation with time series data  
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Source: Korstanje, J. (2023) 

Drawback: Errors of shorter periods may be biased. 



Validation with time series data  
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Source: Korstanje, J. (2023) 

Problem here could be that folds 1 and 2 are too far from test set.



Validation with panel data  
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Package 
PanelSplit (Frey 
and Simon, 
2024) for 
splitting panel 
data:  



Applications of ML for agricultural economists  

         17 

 

If prediction is core business of ML, what are potential uses? 

▪ Prediction in markets and macro-variables 
▪ Prediction of food security at micro-level (Zhou et al., 2022) 
▪ Selection of relevant predictors in big data and new types of 

data, e.g. satellite and text data.  
▪ Prediction in causal inference: IV regression, counterfactuals, 

propensity scores. 
▪ Testing theories (are predictions in line with theory?) 
 
Mullainathan and Spiess (2017): New methods may allow 
exploring new problems and answering new questions. 



Advantages of ML 
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Coulombe et al. (2022) investigated how ML can be beneficial 
for macro-economic forecasting. Main conclusions are that ML 
is superior in picking up non-linearities in the data, and that k-
fold cross-validation is the best approach to validate models. 
 
Non-linearities arise in times of economic uncertainty. 
 
Brignoli et al (2024a) compare classical time-series methods 
(ARIMA, VAR, VECM) with Neural Networks in forecasting 
various commodity prices. NNs perform well in longer 
forecasting horizons and in cases of breaks (volatile periods).  
  



Advantages of ML 
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Brignoli et al. (2024b) investigate how ML perform in 
estimating  treatment effects in a simulation experiment based 
on EU FADN panel data. Focus on selection of functional form, 
non-linearities, controls, treatment effect heterogeneity, and 
latent confounding control.  
 
Authors conclude: ML methods outperform classical methods, 
particularly tree- and forest-based methods. 
 
See Storm et al. (2020) for an elaborate overview of methods 
and applications. 



Hands-on case: Predicting Soybean prices 
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▪ Data: 22 commodity prices Jan. 2003-Dec. 2024 (264 obs.) 
▪ Goal: create models to predict soybean prices 
▪ 12 months in 2024 are test sample; other training sample 
▪ Various ML techniques explained and compared, also to 

standard time-series techniques. 
▪ Analysis done in Python (Jupyter notebooks) 
  



Hands-on case: Predicting Soybean prices 
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Classical time-series econometrics 
▪ Select relevant variables, e.g., based on theory or interest 
▪ Test for (non-)stationarity,  e.g.,  ADF , PP or KPSS test 
▪ Decide on # of lags, trends and constants 
▪ Test for cointegration: long-run equilibria among series 
▪ Use model for prediction (or IRF analysis for VAR/VECM) 
 
First, some standard tests were done in Python: 
▪ All 22 series non-stationary; first-differences all stationary 
▪ Bivariate Engle-Granger cointegration tests: soybeans 

cointegrated with 6 other commodities: palm oil, canola oil, 
maize, wheat, potassium, soy oil. 

 
So, how does Machine Learning deal with all this? 
 



Hands-on case: Predicting Soybean prices 
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Variable Selection Techniques (shrinkage) 
▪ Ridge Regression 
▪ Least Absolute Shrinkage and Selection Operator (LASSO) 

• Regular/Adaptive/Group LASSO 
▪ Elastic Net (combo of Ridge Reg. and LASSO) 
▪ Smoothly Clipped Absolute Deviation (SCAD)  
 
Used to select a subset of variables from a large set. Often 
combined with other ML methods. 
 
How: Add a penalty term to a regression objective, shrink 
various coefficients towards zero (RR) or exactly zero (LASSO).  

LASSO:  
p pn

i j ij j
i j j

RSS y x

2

0
1 1 1

min


   
= = =

 
= − − + 

 
      



Hands-on case: Predicting Soybean prices 
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Regular LASSO with TS cross-validation, grid search on optimal 
penalty term, and up to 2-period lagged diffs. (65 variables) 1: 
 
 
  

 
1 Credits to ChatGPT for helping this noob with Python coding… 



Hands-on case: Predicting Soybean prices 
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Regression trees and Ensembles of trees 
▪ Simple regression trees 
▪ Bootstrap aggregation (Bagging) of trees 
▪ Random Forests 
▪ Boosting 
▪ Bayesian Additive Regression Trees (BART) 
 
  



Hands-on case: Predicting Soybean prices 
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Predicted differences in 2024: 

  



Hands-on case: Predicting Soybean prices 
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Simple tree is inferior (weak learner) 
▪ Many similar predictions. 
▪ If data changes, tree will change. 
 
Ensembles of trees combine trees using various ‘tricks’: 
▪ Taking random subsets of training data (Bagging) 
▪ Randomly select variables for different trees (Random For.) 
▪ Updating earlier trees/Learning (Boosting and BART) 
 

Gardebroek et al. (2024) used a mixed-effects Random Forest 
model to forecast acreages of biomaterials (hemp and flax) in 
several European countries. 
  



Hands-on case: Predicting Soybean prices 

         27 

Prediction for Random Forest using the 65 variables and max. 
tree depth of 5: 
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Hands-on case: Predicting Soybean prices 
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Neural Networks (Deep Learning) 

▪ Simple feedforward Neural  Network 

 

 

 

 
 
 

Source: James et al., 2023: 400. 
 

p =784 variables 
K1 = 256 
K2 = 128 
Output units: 10 
Weights: 235146  (!) 
 



Hands-on case: Predicting Soybean prices 
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Inside the neurons are so-called activation functions with 
weights, transforming the data. Various options (e.g. linear, 
piecewise linear, softmax), but very popular are: 

1. Sigmoid or logistic function: ( )
1

1 1

X

X X

e
h X

e e−
= =

+ +
    

2. Hyperbolic tangent function: ( )tanh
X X

X X

e e
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−

−
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Logistic function Hyperbolic tangent 



Hands-on case: Predicting Soybean prices 
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A single layered Neural Network reminds of: 
▪ Non-linear regression if output is continuous 
▪ (Non-linear) binary choice if output is binary 
▪ (Non-linear) multinomial choice if multiple integer outputs 
 
However, the above models often have a fixed functional form 
(e.g. Logit), whereas NN is very flexible. 
 
System nature of NN also reminds of VAR/VECM or 
simultaneous equations models. However, the latter are linear 
in parameters, whereas NN is highly non-linear.  
 
Problem of simple feed-forward NNs: not suited for dealing 
with past values/sequences. We could manually create many 
lagged values, but that would lead to huge number of weights.   



Hands-on case: Predicting Soybean prices 
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Recurrent Neural Networks (RNNs) consider sequential nature 
of inputs Xi (e.g. time order). Drawback: no long memory: long-
term information decays quickly (vanishing gradient problem). 
 
Long-short-term memory (LSTM) and Gated Recurrent Unit 
(GRU) add several functions to the hidden state, that allow for 
separating short-term and long-term learning.  
 
This is done by combining different activation functions via 
different trajectories in the hidden states. 
  



Hands-on case: Predicting Soybean prices 
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Red circle: logistic/sigmoid function; Blue circle: tanh function. 
 
The Cell state captures the long-term memory. The incoming 
value ct-1 can be multiplied or something may be added.  
 
But no weights or biases can modify it, so not affected by 
vanishing (or exploding) gradient problem.  
 
Processing of the hidden state updates short-term memory.  

Hidden State processing 

Cell State 



Hands-on case: Predicting Soybean prices 
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Comparison of simple VAR(2) model forecasts for 2024 with: 
▪ NN1: Simple Feed Forward NN without a hidden layer, 2 

output layers with linear activation functions, and using 2-
period values as inputs (mimics simple VAR2): only 10 
parameters to train. 

Part of Tensorflow/Keras code: 

 
▪ NN2: Feed-forward NN with 2 hidden layers, total 117 

parameters to train. 
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Ok, enough for today 
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Hope you got a basic understanding of what ML can and can’t 
do. 
 
Several items not discussed: 
▪ Support Vector Machines 
▪ Interpretable Machine Learning (Shapley Values and SHAP) 
▪ Opening up the black boxes 
▪ Many other new routines 
 
Time-series forecasting as an example, but we could also focus 
on cross-sectional or panel data. 
 



Appetite for more?  
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5-day PhD course Machine Learning and Econometrics 
dr. ir. Koos Gardebroek, Wageningen University, The Netherlands 

 
What is Machine Learning how does it differ from and complement traditional 
econometrics? Pros and cons of ML methods with typical agricultural cases. 

 Theory in morning sessions, hands-on Python coding in afternoons. 

 
Topics 

Introduction to Machine Learning and Python  
Variable selection methods 

Random trees and forests, bagging and boosting  
Deep Learning and Neural Networks 

Vector Support Machines and Interpretable Machine Learning 
 
 

Your own institute? Or spring 2026 Wageningen 
Interested? Contact me at: koos.gardebroek@wur.nl 
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Thank you for your attention! 
 

Any questions?
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