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What is Machine Learning?

Machine Learning (or statistical learning; ML): set of tools or
algorithms for understanding data.

Novelty of machine learning is that it often follows a purely
data-driven approach. Classical econometrics often more
procedural:

- Start from theory in selecting variables

- Choose a specific functional form a priori
- Choose a specific statistical technique (e.g. OLS) a priori

Contributions of novel ML literature are:

1. Many new tools (e.g. trees & forests, neural networks)

2. New ideas on how to analyse data.

3. Methods for analysing big data in automated way, even if there are
more variables than observations.



Why study Machine Learning?

1. Offers new ways of analysing data.

2. In other research fields already used a lot, so
interdisciplinary cooperation and communication may
require knowledge.

3. More and more data becoming available, e.g. internet data,
big data, climate data, text data. May require new tools.
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Purposes of Machine Learning

Main purposes of ML are prediction and classification.

Inference is about understanding the relation between input

and output variables. E.g. (James et al,, 2023: 19):
- Which predictors are associated with the response?
- What is the relationship between the response and each predictor?
- Is the relationship linear or more complicated?

In regression analysis these questions are usually answered
using hypothesis testing (e.g. t-test, F-test, LR-test). In ML this
is (almost) absent, although other approaches are getting
popular (e.g. Shapley values).

Often trade-off between prediction accuracy and model
interpretability (and possibility of inference).



Purposes of Machine Learning

Least Squares

Generalized Additive Models

Trees

Bagging, Boosting

Support Vector Machines
Deep Learning
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FIGURE 2.7. A representation of the tradeoff between flexibility and inter-

pretability, using different statistical learning methods. In general, as the flexibility
of a method increases, its interpretability decreases.

Source: James et al., 2023: 24.



So, why can’t we do inference in ML?

= Standard errors often not given, or even impossible

= Certain ML methods select variables from large pool:
e May randomly differ in different runs, many coefficients set to zero
e Strong correlation would lead to large standard errors in regression
due to multicollinearity, ML (e.g. LASSO, trees) just drops them.
e Selecting some but not others = missing variable bias

* Regularization (setting key parameters, e.g. # of trees and
depth) adds subjectivity.

In practice, superior prediction of ML is appreciated, at the cost
of not being able to interpret and test the coefficients.

Not this LASSO...




So, why can’t we do inference in ML?

Efron (2020): Success of ML due to fact that prediction is easier

than estimation or attribution (inference).
= Some ML methods combine individually weak learners (ensembles)
= Attribution demands much more of individual variables.

Efron (2020): so-called ‘importance scores’ for predictors, e.g.,
in random forest, cannot be used to claim that certain variables

are key due to strong correlations among the many variables
—> strong correlation does not matter for prediction
—> strong correlation makes attribution/inference very difficult

Feature Importance
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Machine Learning in practice

ML does not imply automatic implementation of the best model
and training method. Still many choices:

1a. Choice of ML method
1b. Setting key parameters for method (e.g. # of trees; # of
variables; shrinkage parameter)

2a. Encoding and transformation of variables (per unit; In or
linear; first-differences; normalised)
2b. Theory may be useful in many modeling decisions

3. Choices on how to evaluate quality of the model, e.g., MSE,
RMSE, MAE, MAPE



Machine Learning in practice

In econometrics models often estimated on all data available,
and then used for inference or (out-of-sample) prediction.

Due to the prediction focus, ML typically has 3 phases: training,
validation, and testing.

Available data is partly used to train (estimate) the model,
validated on a (randomly) held out subsample of the training
data, and finally used for testing (prediction in test sample).

A danger of more flexible ML approaches is overfitting: the
model follows the data, including the errors, too closely = poor
predictions in test stage. In other words, the improved training
fit goes at the cost of testing (or prediction) fit.
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Machine Learning in practice

Table 1

Performance of Different Algorithms in Predicting House Values

Prediction performance (RZ )

Relative improvement over ordinary least
squares by quintile of house value

Training Hold-out
Method sample sample Ist 2nd Srd 4th 5th
Ordinary least 47.3% 41.7% - - - - -
squares [39.7%, 43.7%]
Regression tree 39.6% 34.5% -11.5% 10.8% 6.4% -14.6% -31.8%
tuned by depth [32.6%, 36.5%]
LASSO 46.0% 43.5% 1.83% 11.9% 1381% 10.1% -1.9%
[41.5%, 45.2% ]
Random forest 85.1% 45.5% 3.5% 23.6% 27.0% 178% —-05%
[43.6%, 47.5%]
Ensemble 80.4% 45.9% 45% 16.0% 179% 142% 7.6%

[44.0%, 47.9%]

Note: The dependent variable is the log-dollar house value of owner-occupied units in the 2011
American Housing Survey from 150 covariates including unit characteristics and quality measures.
All algorithms are fitted on the same, randomly drawn training sample of 10,000 units and

evaluated on the 41,808 remaining held-out units. The numbers in brackets in the hold-out sample
column are 95 percent bootstrap confidence intervals for hold-out prediction performance, and
represent measurement variation for a fixed prediction function. For this illustration, we do not
use sampling weights. Details are provided in the online Appendix at http://e-jep.org.

Source: Mullainathan and Spiess (2017)
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Machine Learning in practice

[f no extensive test set available, cross-validation can be used:
hold out a subset of training observations and use as validation
set which fit proxies for test fit. Validation set # test set!

Most popular is K-fold cross-validation: Randomly divide
training sample in k folds or groups. Train the model k times,
every time leaving out one of the folds and calculating measure
of fit for the hold-out fold. Final measure is average over the k

1 k
values, e.g., MSE ., = ;ZMSE . 2 cross-validation error
i=1

Usually k setto 5 or 10.

12



Machine Learning in practice

Cross-validation useful for:

Evaluating model performance (model assessment)
Comparing performance of various models (model selection)
Avoiding overfitting

Getting better estimate of prediction error.

Time-series and panel data have a clear time ordering of data.

So, randomly holding out obs. in cross-validation not ideal:

= Lagged values included in models cannot be taken.

= Obs. strongly correlate over time, so randomly held out obs. easy to
predict = flawed validation fit measures.

Idea of k-fold cross-validation can be adapted for time-series
and panel data, maintaining the time order of observations, by
using k overlapping blocks of training and validation data.

13



Validation with time series data

Original data: 100 observations

Test Error

Fold 1

Test Error

Fold 2

Fold 3

Test Error

Test Error

Fold 4

Average

CV Error

Figure 2-3. Time series cross-validation in Python
Source: Korstanje, J. (2023)

Drawback: Errors of shorter periods may be biased.
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Validation with time series data

Original data: 100 observations
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Figure 2-4. Rolling time series cross-validation in Python

Source: Korstanje, J. (2023)

Problem here could be that folds 1 and 2 are too far from test set.
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Validation with panel data

P a Cka g e Train set Test set
. panel_data.loc[splits[0][0]] panel_data.loc[splits[0][1]]
Panelspllt (Frey country_id year y x1 x2 country_id year y x1 x2
d S. Split 0 0 1 2001 162 -0.32 0.90 1 1 2002 -061 -0.38 -0.68
dana simon, 4 2 2001 087 -017 -027 5 2 2002 -230 -0.88 053
2024) for 8 3 2001 032 -110 -0.69 9 3 2002 -0.25 114 -0.85
Spllttlng panel panel_data.loc[splits[1][0]] panel_data.loc[splits[1][1]]
country_id year y x1 x2 country_id year y x1 x2
data: 0 1 2001 162 -032 0.90 2 1 2003 -0.53 113 -0.12
1 1 2002 -061 -0.38 -0.68 6 2 2003 174 0.04 -0.69
Spit1 4 2 2001 087 -017 -027 10 3 2003 146 090 -0.67
5 2 2002 -230 -0.88 0.53
8 3 2001 032 -110 -0.69
9 3 2002 -0.25 114 -0.85
panel_data.loc[splits[2][0]] panel_data.loc[splits[2][1]]
country_id year y x1 x2 country_id year y x1 x2
0 1 2001 162 -0.32 0.90 3 1 2004 -1.07 -110 -0.94
1 1 2002 -061 -0.38 -0.68 7 2 2004 -0.76 0.58 -0.40
2 1 2003 -0.53 113 -0.12 " 3 2004 -2.06 050 -0.01
split2 4 2 2001 087 -017 -0.27
5 2 2002 -230 -0.88 0.53
6 2 2003 1.74 0.04 -0.69
8 3 2001 032 -110 -0.69
9 3 2002 -0.25 114 -0.85
10 3 2003 146 090 -0.67



Applications of ML for agricultural economists

If prediction is core business of ML, what are potential uses?

* Prediction in markets and macro-variables

= Prediction of food security at micro-level (Zhou et al., 2022)

= Selection of relevant predictors in big data and new types of
data, e.g. satellite and text data.

= Prediction in causal inference: IV regression, counterfactuals
propensity scores.

= Testing theories (are predictions in line with theory?)

Mullainathan and Spiess (2017): New methods may allow
exploring new problems and answering new questions.

)
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Advantages of ML

Coulombe et al. (2022) investigated how ML can be beneficial
for macro-economic forecasting. Main conclusions are that ML
is superior in picking up non-linearities in the data, and that k-
fold cross-validation is the best approach to validate models.

Non-linearities arise in times of economic uncertainty.

Brignoli et al (2024a) compare classical time-series methods
(ARIMA, VAR, VECM) with Neural Networks in forecasting
various commodity prices. NNs perform well in longer
forecasting horizons and in cases of breaks (volatile periods).

18



Advantages of ML

Brignoli et al. (2024b) investigate how ML perform in
estimating treatment effects in a simulation experiment based
on EU FADN panel data. Focus on selection of functional form,
non-linearities, controls, treatment effect heterogeneity, and
latent confounding control.

Authors conclude: ML methods outperform classical methods,
particularly tree- and forest-based methods.

See Storm et al. (2020) for an elaborate overview of methods
and applications.
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Hands-on case: Predicting Soybean prices

= Data: 22 commodity prices Jan. 2003-Dec. 2024 (264 obs.)

= (Goal: create models to predict soybean prices

= 12 monthsin 2024 are test sample; other training sample

= Various ML techniques explained and compared, also to
standard time-series techniques.

= Analysis done in Python (Jupyter notebooks)

- Jupyter Lab1ARIMA Last checkpoint: 01/17/2025 (autosaved) A Logout
File Edit View Insert Cel Kemel Widgets Help Mot Trusted | & | Python 3 O
+ s« A B 4+ ¥ PRin B C W Code v =

In [1]: # Importing required Libraries and packages
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.api as sm
from statsmodels.tsa.stattools import adfuller
from statsmodels.tsa.arima.model import ARIMA
from statsmodels.tsa.ar_model import AutoReg, ar_select_order
from sklearn.metrics import r2_score
from sklearn.model_selection import TimeSeriesSplit

In [2]: # loading the data
# Import the dataframe

data = pd.read_excel(’ /Users/Garde@@3/Python/PhDcourseML/commodities.x1sx', parse_dates=["t"])

# Describe the dataframe
#print(data.describe)

#In this exercise we will construct several model to predict soybeans (last column in the datafile)
time=data["t"]
y=data[ "soybean"]

#Next, we make a simple Line plot of the three series

#Note that for the x-axis we could specify some nicer dates based on the variable time, but that is for Llater
plt.plot(y, label = "Price index soybeans”, color='r')

plt.legend()

plt.show()

#Tn this excercise we will use the last 12 months of 2824 as test (holdout) samn ie
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Hands-on case: Predicting Soybean prices

Classical time-series econometrics

= Select relevant variables, e.g., based on theory or interest
= Test for (non-)stationarity, e.g.,, ADF, PP or KPSS test

= Decide on # of lags, trends and constants

= Test for cointegration: long-run equilibria among series

= Use model for prediction (or IRF analysis for VAR/VECM)

First, some standard tests were done in Python:

= All 22 series non-stationary; first-differences all stationary

= Bivariate Engle-Granger cointegration tests: soybeans
cointegrated with 6 other commodities: palm oil, canola oil,
maize, wheat, potassium, soy oil.

So, how does Machine Learning deal with all this?

21



Hands-on case: Predicting Soybean prices
Variable Selection Techniques (shrinkage)

= Least Absolute Shrinkage and Selection Operator (LASSO)
e Regular/

Used to select a subset of variables from a large set. Often
combined with other ML methods.

How: Add a penalty term to a regression objective, shrink
various coefficients towards zero (RR) or exactly zero (LASSO).

2
LASSO: min RSS = Z(yi - B, —Zp:,ﬁjxijj +/1i‘,8j |
i=1 j=1 j=1
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Hands-on case: Predicting Soybean prices

Regular LASSO with TS cross-validation, grid search on optimal

penalty term, and up to 2-period lagged diffs. (65 variables) 1:

1| # Finally, we will create one-month and two-month Lagged values ef all prices and include these in a CVLASSOD

# Creating extra columns with Lagged values for variables
# Specify the columns to Lag (all except the date column)
columns_to_lag = [col for col in X_traindiff.columns]

# Specify the number of Lags
lags = [1, 2] # Example: Lagged by 1 and 2 periods

# Create lLagged variables
for col in columns_to_lag:
for lag in lags:
X_traindiff[f"{col}_lag_{lag}"] = X_traindiff[col].shift(lag)

# Drop rows with missing values
X_traindiff = X_traindiff.dropna().reset_index(drop=True)

#Note we also need to drop the first 2 obs. in y traindiff since otherwise dimension does not match with X_traindiff
y_traindiff=y_traindiff.iloc[2:]

# Use TimeSeriesSplit for cross-validation
tscv = TimeSeriesSplit(n_splits=5)

# Fit LassoCV with time series splits
lasso_cv = LassoCV(cv=tscv, random_state=42, max_iter=1@@e@)
lasso_cv.fit(X_traindiff, y_traindiff)

# Get the optimal alpha (Lambda)
optimal_lambda = lasso_cv.alpha_
print(f"Optimal Lambda (alpha): {optimal_lambda}")

#vif data2["Feature”] = X_traindiff.columns

# Extract non-zero coefficients
nonzero_mask = lasso cv.coef =@
final coefficients = pd.DataFrame({
"Feature”: X_traindiff.columns,
"Coefficient": lasso_cv.coef_
}).loc[nonzero_mask]

print("\nFinal Non-Zero Coefficients:")
print(final_coefficients)

Optimal Lambda (alpha): ©.888558358182186155

Final Mon-Zero Coefficients:
Coefficient

oo @

13
15
16
17
19
268
37
23
48
47
48
51
52
54
55
62

Feature
crudoil
coconoil

maize

sugar

dap

potass

copper

soyoil

soymeal
sunfloil lag 1
sunfloil lag 2
maize lag 2
sugar lag 1
sugar lag 2
dap_lag 1
dap_lag 2
potass lag 2
copper_lag 1
soymeal lag 2

1 Credits to ChatGPT for helping this noob with Python coding...

. 288616
822167
.873836
. 8809896
. 829786
.ead2as
839579
. 382928
. 356785
.833423
819282
812473
829217
. 287858
814198
.8a1931
.820663
.8a3254
856252
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Hands-on case: Predicting Soybean prices

Regression trees and Ensembles of trees

" Simple regression trees

" Bootstrap aggregation (Bagging) of trees

* Random Forests

= Boosting

" Bayesian Additive Regression Trees (BART)




Hands-on case: Predicting Soybean prices

Regression Tree Visualization

soymeal <= 0.048
mse = 0.011
samples = 249
!f#fgf###,sf B
sunfloil <= -0.345 \‘
mse = 0.007
samples = 172
value = -0.032
dap == -0.035 palmoil == -0.017 coffes <= 0.62
mse = 0,026 mse = 0.005 mse = 0.00%
samples = 6 samples = 166 samples =
value = -0.236 value = -0.024 value = 0.05
mse = 0. 'DIII'EI- mse = 0. uug mse = 0.007 mse = 0.003 mse = 0. [H:Iﬁ mse = 0. n -
samples = samples = samples = 68 samples = 83 samples = samples =
valus = -0 -111 valus = -0. ldd value = -0.056 valus = -0.002 value = ﬂﬂﬁ? valus = -0, EII!]'E
Predicted differences in 2024:

Mean 5Squared Error: 6.6142
[-9.88233248 -9©.0808233248 -9.80233248 -0.00233248
-8.00233248 -0.08233248 -0.808233248 -9.08233248

B.856046086 -0.08233248
-B.86233248 -8.88233248]




Hands-on case: Predicting Soybean prices

Simple tree is inferior (weak learner)
= Many similar predictions.
= If data changes, tree will change.

Ensembles of trees combine trees using various ‘tricks’:

= Taking random subsets of training data (Bagging)

= Randomly select variables for different trees (Random For.)
= Updating earlier trees/Learning (Boosting and BART)

Gardebroek et al. (2024) used a mixed-effects Random Forest
model to forecast acreages of biomaterials (hemp and flax) in
several European countries.
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Hands-on case: Predicting Soybean prices
Prediction for Random Forest using the 65 variables and max.
tree depth of 5:

Name: soybean, dtype: float64
[-2.845440962 -8.853094809 ©.08887389 -9.91828938 ©.18832755 -8.81647553
9.88973835 -8.84592832 -G.ee47426 9.82349475 -8.88143631 -8.83169992]

Feature Importance
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Hands-on case: Predicting Soybean prices

2.8
2.6
24

2.2

1.8

1.6

1.4

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Observed == == | ASSO = = == = Random Forest ===« ARIMA(1 2 8;1,0) = = = = ARIMA(2;1;0)
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Hands-on case: Predicting Soybean prices

Neural Networks (Deep Learning)

= Simple feedforward Neural Network

Input
layer

Hidden

layer L1
Hidden
layer L2
? Output

X1

@
. Al

layer

\irfO(X)ﬁ Yo .
<S< p =784 variables
,,ﬁf1<X>ﬁ v Ki =256
‘ K>=128
Output units: 10

. Weights: 235146 (1)

Source: James et al., 2023: 400.
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Hands-on case: Predicting Soybean prices

Inside the neurons are so-called activation functions with
weights, transforming the data. Various options (e.g. linear,
piecewise linear, softmax), but very popular are:

e* 1
1. Sigmoid or logistic function: h( X )= =
5 5 (%) 1+e* 1+e*
X _oX
2. Hyperbolic tangent function: h= tanh(X) =———
e’ +e

1.0

/

05F

0.0

051

| 0 J -1.0 I | 1 I I
-6 -4 -2 0 2 4 6 -3 -2 -1 0 1 2 3

Logistic function Hyperbolic tangent
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Hands-on case: Predicting Soybean prices

A single layered Neural Network reminds of:

* Non-linear regression if output is continuous

= (Non-linear) binary choice if output is binary

* (Non-linear) multinomial choice if multiple integer outputs

However, the above models often have a fixed functional form
(e.g. Logit), whereas NN is very flexible.

System nature of NN also reminds of VAR/VECM or
simultaneous equations models. However, the latter are linear
in parameters, whereas NN is highly non-linear.

Problem of simple feed-forward NNs: not suited for dealing
with past values/sequences. We could manually create many
lagged values, but that would lead to huge number of weights.
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Hands-on case: Predicting Soybean prices

Recurrent Neural Networks (RNNs) consider sequential nature
of inputs X; (e.g. time order). Drawback: no long memory: long-
term information decays quickly (vanishing gradient problem).

Long-short-term memory (LSTM) and Gated Recurrent Unit
(GRU) add several functions to the hidden state, that allow for
separating short-term and long-term learning.

This is done by combining different activation functions via
different trajectories in the hidden states.

32



Hands-on case: Predicting Soybean prices

<« Hidden State processing

Red circle: logistic/sigmoid function; Blue circle: tanh function.

The Cell state captures the long-term memory. The incoming
value cx; can be multiplied or something may be added.

But no weights or biases can modify it, so not affected by
vanishing (or exploding) gradient problem.

Processing of the hidden state updates short-term memory.
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Hands-on case: Predicting Soybean prices

Comparison of simple VAR(2) model forecasts for 2024 with:

= NN1: Simple Feed Forward NN without a hidden layer, 2
output layers with linear activation functions, and using 2-
period values as inputs (mimics simple VAR2): only 10
parameters to train.

Part of Tensorflow/Keras code:

modell = Sequential([
Dense(2, activation="linear', input_shape=(4,)), # Hidden Layer

1)

= NN2: Feed-forward NN with 2 hidden layers, total 117
parameters to train.

# Create g simple feedforward neural network

model2 = Sequential(][
Dense(10, activation='relu', input_shape=(4,)}), # First hidden Layer
Dense(5, activation="tanh'), # Second hidden Layer
Dense(2, activation='linear’) # Output Layer for regression

D
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Hands-on case: Predicting Soybean prices

Soybeans

2.8

2.6

24
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= = =« NN2SoyB
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Hands-on case: Predicting Soybean prices

Soyoil
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Ok, enough for today

Hope you got a basic understanding of what ML can and can'’t
do.

Several items not discussed:

= Support Vector Machines

= Interpretable Machine Learning (Shapley Values and SHAP)
= Opening up the black boxes

= Many other new routines

Time-series forecasting as an example, but we could also focus
on cross-sectional or panel data.

37



Appetite for more?

5-day PhD course Machine Learning and Econometrics
dr. ir. Koos Gardebroek, Wageningen University, The Netherlands

What is Machine Learning how does it differ from and complement traditional
econometrics? Pros and cons of ML methods with typical agricultural cases.
Theory in morning sessions, hands-on Python coding in afternoons.

Topics
Introduction to Machine Learning and Python
Variable selection methods
Random trees and forests, bagging and boosting
Deep Learning and Neural Networks
Vector Support Machines and Interpretable Machine Learning

Your own institute? Or spring 2026 Wageningen
Interested? Contact me at: koos.gardebroek@wur.nl
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Thank you for your attention!

Any questions?
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